New Helical End Mill Design Added to the MECH Product Line

Unique Design for Stable Titanium Alloy Milling
- Insert combination for increased stability
- Special holder design for increased reliability
- Coolant holes for Excellent chip evacuation

Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating Technology
MECHT

Helical End Mill for Titanium Alloy Machining

Insert Size Combination Improves Roughing Capabilities
Improved Coolant Hole Maintains Stable Machining and Long Tool Life

1. **Developed to Reduce Chattering and Chip Recutting Issues**

Unique Insert Combination
Larger bottom inserts are positioned to handle larger cutting forces (excluding Ø32mm)
Increased fracture resistance for stable machining

New Design for Higher Reliability
Bottom inserts are held in place by double-faced contacts

- **Holding Surface 1**
 Wide Holding Surface
- **Holding Surface 2**
 Additional Hold in the Axial Direction

- **Bore Dia.**
 Larger bore diameter improves fastening power and reduces chattering
 Ø50mm Cutter with a Ø27mm Bore (Conventional Bore: Ø22mm)

- **Toolholder Hardness**
 Hardened 15% more than conventional holders

- **Toolholder Spec**
 Custom ordering available
 (Custom number of inserts and stages)

Excellent Chip Evacuation

- **New flute design**
 Large, smooth flutes prevent chip clogging

MECHT (Ø50mm-4T 3 Stages)
Conventional (Ø50mm-4T 4 Stages)

- **Large flute**
- **Smooth design**

- **All inserts have coolant holes**
 Optimized hole diameter controls flow amount and pressure
 Smooth chip evacuation as well as superior cooling of the cutting edge
Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating

Low Cutting Force
JS Chipbreaker
Heat at the cutting edge is suppressed due to sharp cutting performance extending tool life

Greater Toughness
PR1535
Fracture resistant with a tough substrate and high heat-resistant MEGACOAT NANO coating technology

Tool Life Comparison (Internal Evaluation)

MECHT showed good cutting edge condition with 50% longer tool life than competitor B.

<table>
<thead>
<tr>
<th>Cutting time (min)</th>
<th>Tool Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MECHT</td>
</tr>
<tr>
<td>50</td>
<td>Further Machining Possible</td>
</tr>
<tr>
<td>100</td>
<td>Fracture</td>
</tr>
<tr>
<td>150</td>
<td>x1.5</td>
</tr>
</tbody>
</table>

Cutting Edge after Machining 50 min

- **MECHT**: Good
- **Competitor A**: Fracture

Cutting Conditions: Vc = 130 sfm, D.O.C. x ae = 1.692" x 0.787", fz = 0.0047 ipt, ø50mm (5 Flutes), Wet (External and internal coolant) Workpiece: Ti-6Al-4V Machine: T50

Slotting Titanium Alloy (Internal Evaluation)

D.O.C. = 0.787" (0.4 x DC)

Stable Machining without Chip Clogging or Chattering

- **Chip Clogging**: None
- **Chattering**: None

Cutting Conditions: Vc = 130 sfm, D.O.C. x ae = 0.787" x 1.97" (Slotting), fz = 0.003 ipt ø50mm (5 Flutes), Wet (Internal coolant) Workpiece: Ti-6Al-4V Machine: BT50

Recommended Cutting Conditions

<table>
<thead>
<tr>
<th>Workpiece</th>
<th>Applications</th>
<th>Depth of Cut (in)</th>
<th>fz (ipt)</th>
<th>Recommended Insert Grade (Vc : sfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-6Al-4V</td>
<td>Shouldering</td>
<td>~Length of Cut (APMX)</td>
<td>~0.5 DC</td>
<td>0.004 ~ 0.005 ~ 0.006</td>
</tr>
<tr>
<td>Ti-6Al-4V</td>
<td>Slotting</td>
<td>~0.5 DC</td>
<td>1 DC</td>
<td>0.002 ~ 0.003 ~ 0.004</td>
</tr>
</tbody>
</table>

Case Study

Aerospace Part Ti-6Al-4V

- Vc = 180 sfm (n = 350 rpm)
- D.O.C. x ae = 0.94" x 0.63"
- fz = 0.004 ipt (Vf = 4.96 ipm)
- Wet (Internal coolant)
- MECHT50R-1711-3-4T-M BDMT170408ER-JS PR1535 (first stage)
- BDMT11T308ER-JS PR1535 (second and third stage)

Cutting Efficiency

- **MECHT**: Vf = 4.96 ipm x1.5
- **Competitor B**: Vf = 3.30 ipm

MECHT showed good chip evacuation and stable machining even with increasing feed rate. Machining efficiency was 50% better than that of the competitor with equivalent tool life. (User evaluation)
End Mill Dimensions

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Stock</th>
<th>No. of Flutes</th>
<th>No. of Stages</th>
<th>No. of Inserts</th>
<th>Dimensions (mm)</th>
<th>Drawing</th>
<th>Spare Parts</th>
<th>Applicable Inserts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHT 32-S32-11-5-4T</td>
<td>● 4 5 20</td>
<td>32 32 140</td>
<td>55 46</td>
<td>DC DCON LF LH APMX</td>
<td>SB-2555TRG DTM-8</td>
<td>MECHT32**-11-</td>
<td>1st Stage 2nd Stage or Higher</td>
<td></td>
</tr>
</tbody>
</table>

Shell Mill Dimensions

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Stock</th>
<th>No. of Flutes</th>
<th>No. of Stages</th>
<th>No. of Inserts</th>
<th>Dimensions (mm)</th>
<th>Drawing</th>
<th>Spare Parts</th>
<th>Applicable Inserts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHT 50R-1711-3-4T-M</td>
<td>● 4 5 20</td>
<td>50 27 20</td>
<td>14 55 65</td>
<td>DC DCCB LF CBDP KDP KWW APMX</td>
<td>SB-2555TRG DTM-8</td>
<td>MECHT50**-1711-</td>
<td>1st Stage 2nd Stage or Higher</td>
<td></td>
</tr>
</tbody>
</table>

Applicable Inserts

<table>
<thead>
<tr>
<th>Insert Right-Hand Shown</th>
<th>Part Number</th>
<th>Dimensions (mm)</th>
<th>Angle</th>
<th>MEGACOAT NANO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDMT 11T302ER-J5</td>
<td>6.7 3.8 2.8 11.0</td>
<td>18° 13°</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>BDMT 11T304ER-J5</td>
<td>6.7 3.8 2.8 11.0</td>
<td>18° 13°</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>BDMT 11T306ER-J5</td>
<td>6.7 3.8 2.8 11.0</td>
<td>18° 13°</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

General JT chipbreaker and notched insert (only if holder has an even number of inserts) can also be used.

For more information, please contact your Kyocera sales representative.

©KYOCERA Precision Tools 07/2020